Unexpected improvements to expected improvement for Bayesian optimization
[Preprint]
Sebastian Ament, Samuel Daulton, David Eriksson, Maximilian Balandat, Eytan Bakshy
Neural Information Processing Systems (NeurIPS 2023)
Bayesian Optimization over High-Dimensional Combinatorial Spaces via Dictionary-based Embeddings
[Paper]
Aryan Deshwal, Sebastian Ament, Maximilian Balandat, Eytan Bakshy, Janardhan Rao Doppa, David Eriksson
Artificial Intelligence and Statistics (AISTATS 2023)
Discovering Many Diverse Solutions with Bayesian Optimization
[Paper]
Natalie Maus, Kaiwen Wu, David Eriksson, Jacob R. Gardner
Artificial Intelligence and Statistics (AISTATS 2023)
Sparse Bayesian optimization
[Paper]
Sulin Liu, Qing Feng, David Eriksson, Benjamin Letham, Eytan Bakshy
Artificial Intelligence and Statistics (AISTATS 2023)
Bayesian optimization over discrete and mixed spaces via probabilistic reparameterization
[Paper]
Samuel Daulton, Xingchen Wan, David Eriksson, Maximilian Balandat, Michael A Osborne, Eytan Bakshy
Neural Information Processing Systems (NeurIPS 2022)
Multi-objective Bayesian optimization over high-dimensional search spaces
[Paper]
Samuel Daulton, David Eriksson, Maximilian Balandat, Eytan Bakshy
Uncertainty in Artificial Intelligence (UAI 2022)
(Oral, acceptance rate = 16.0%)
High-Dimensional Bayesian Optimization with Sparse Axis-Aligned Subspaces
[Paper]
David Eriksson, Martin Jankowiak
Uncertainty in Artificial Intelligence (UAI 2021)
A Nonmyopic Approach to Cost-Constrained Bayesian Optimization
[Paper]
Eric Lee, David Eriksson, Valerio Perrone, Matthias Seeger
Uncertainty in Artificial Intelligence (UAI 2021)
Bayesian Optimization is Superior to Random Search for Machine Learning Hyperparameter Tuning:
Analysis of the Black-Box Optimization Challenge 2020
[Paper]
Ryan Turner, David Eriksson, Michael McCourt, Juha Kiili, Eero Laaksonen, Zhen Xu, Isabelle Guyon
Post Proceedings of the Competitions & Demonstrations Track @ NeurIPS2020
Scalable Constrained Bayesian Optimization
[Paper]
David Eriksson, Matthias Poloczek
Artificial Intelligence and Statistics (AISTATS 2021)
Fast Matrix Square Roots with Applications to Gaussian Processes and Bayesian Optimization
[Paper]
[Code]
Geoff Pleiss, Martin Jankowiak, David Eriksson, Anil Damle, Jacob R. Gardner
Neural Information Processing Systems (NeurIPS 2020)
Efficient Rollout Strategies for Bayesian Optimization
[Paper]
[Code]
Eric Hans Lee, David Eriksson, Bolong Cheng, Michael McCourt, David Bindel
Uncertainty in Artificial Intelligence (UAI 2020)
Scalable Global Optimization via Local Bayesian Optimization
[Paper]
[Code]
David Eriksson, Michael Pearce, Jacob R. Gardner, Ryan Turner, Matthias Poloczek
Neural Information Processing Systems (NeurIPS 2019)
(Spotlight, acceptance rate = 3.0%)
Scaling Gaussian Process Regression with Derivatives [Paper]
David Eriksson, Kun Dong, Eric Lee, David Bindel, Andrew G. Wilson
Neural Information Processing Systems (NeurIPS 2018)
Scalable log determinants for Gaussian process kernel learning [Paper]
Kun Dong, David Eriksson, Hannes Nickisch, David Bindel, Andrew G. Wilson
Neural Information Processing Systems (NeurIPS 2017)
Fast exact shortest distance queries for massive point clouds [Paper]
David Eriksson, Evan Shellshear
Graphical Models (2016)
Tropospheric delay ray tracing applied in VLBI analysis [Paper]
David Eriksson, Daniel S. MacMillan, John M. Gipson
Journal of Geophysical Research: Solid Earth (2014)
Continental hydrology loading observed by VLBI measurements [Paper]
David Eriksson, Daniel S. MacMillan
Journal of Geodesy (2014)